創意解難 挑戰一

學校名稱：_______________________________
姓名：______________ (參賽編號 ____________)
姓名：______________ (參賽編號 ____________)

總分：
時限二十分鐘

鞋帶的長度

指引
本卷共 6 頁。
完成任務一至四內的問題。

任務一 (平方及平方根)

考慮 $5 \times 5 = 5^2 = 25$，我們稱 25 爲 5 的平方，而 5 爲 25 的平方根。例：9 是 81 的平方根。

我們以根號 $\sqrt{}$表示平方根。例：$\sqrt{36} = 6$；$\sqrt{81} = 9$；$\sqrt{49} = 7$

以上的例子，平方根可寫成整數，但有些平方根的值不能以整數表示，我們稱這種平方根為不盡根。
例：$\sqrt{5}$；$\sqrt{11}$；$\sqrt{20}$

圖 1a 中，正方形的面積是 36 平方單位。圖 1b 中，正方形的面積是 36 平方單位。

面積 36 平方單位

正方形的邊長

$= \sqrt{36} = 6$ 單位。

面積 37 平方單位

正方形的邊長

$= \sqrt{37}$ 單位。

因 $\sqrt{37}$ 不能以整數表示，
我們只需用根號 $\sqrt{}$ 表示答案便可。

問題 1 求下列各平方根的值。

(a) $3^2 = 9$，$\sqrt{9} = ________$
(b) $12^2 = 144$，$\sqrt{144} = ________$
(c) $\sqrt{18 \times 18} = ________$
(d) $\sqrt{9 \times 9 \times 9} = ________$

問題 2 判斷下列各數是否不盡根，並在適當的空格中加上「✓」。

(a) $\sqrt{1}$ □ 是 □ 否
(b) $\sqrt{23}$ □ 是 □ 否
(c) $\sqrt{121}$ □ 是 □ 否
(d) $\sqrt{5 \times 5 \times 5}$ □ 是 □ 否
任務二

畢氏定義說明了直角三角形三邊的關係。

畢氏定義：
在一個直角三角形中，斜邊長度的平方等於其餘兩直角邊長度的平方之和。
即若 \(\triangle ABC \) 為直角三角形，
則 \(AC^2 = AB^2 + BC^2 \)

例子

問題 3
利用畢氏定理，判斷下列各三角形是否直角三角形，並在適當的空格中加上「✓」。 (2 分)
(a) □ 是 □ 否
(b) □ 是 □ 否

問題 4
求下列各直角三角形中的未知數。 (如有需要，答案以根式表示。) (2 分)
(a)
(b)
\[x = \ldots \quad y = \ldots \]
任務三

一般的鞋帶有以下繫法:

現在，我們探討方法 A 這一種繫法鞋帶所需的長度。
將方法 A(圖一)的情況簡化為圖二。

問題 5
根據以下各種情況，計算鞋帶長度。 (10 分)
(a) 若有 3 行鞋帶孔(如下圖所示)，求所需鞋帶長度。

鞋帶長度 = ________ cm
(b) 若有 5 行鞋帶孔(如下圖所示)，求所需鞋帶長度。

![鞋帶示意圖](image)

鞋帶長度 = ________ cm

(c) 若有 n 行鞋帶孔(如下圖所示)，求所需鞋帶長度。

![鞋帶示意圖](image)

鞋帶長度

= ___________________________ cm

(答案以 n 表示)

(d) 若有 n 行鞋帶孔(如下圖所示)，求所需鞋帶長度。

![鞋帶示意圖](image)

鞋帶長度

= ______________________________ cm

(答案以 n、d 及 g 表示)
任務四
現在，我們試比較三種方法中哪一種鞋帶長度最短。

以方法 A 及鞋帶孔行數為 3 作例，利用以下規律將鞋帶展開，完成後會得出完整的連續鞋帶線段。
問題 6
利用上頁所提供的方法，將繫鞋帶方法 A、方法 B 及方法 C 的鞋帶展開。 (8 分)

(a) 將方法 A 展開的鞋帶線段繪畫在以下虛線方格內。(參考上頁步驟五完成圖)

(b) 將方法 B 展開的鞋帶線段繪畫在以下虛線方格內。(參考上頁步驟五完成圖)

(c) 將方法 C 展開的鞋帶線段繪畫在以下虛線方格內。(參考上頁步驟五完成圖)

(d) 比較以上各線段，使用最短鞋帶的方法是 ____________

** 完 **